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cal testing. In the area of high strength ceramics, routine testing includes techniques
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between two proposed dumbbell-shaped, uniaxial ceramic compression specimens. Com-
parisons were made for alumina (Al203) material through detailed finite element model-
ling. Differences in stress distributions resulting from both geome.ries were then applied
to experimentally obtained strength values to determine if these values were representa-
tive of the same statistical population.
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SYMBOLS
Oz o v Uniform displacement boundary condition
E........ .. .. Modulus of elasticity
Vize o v i i i v oo Poisson’s ratio
SCF . ......... Axial stress concentration factor
Oc v v i i Compressive strength of material
Otr v o v e e e Radial stress component
Opz|g- -« o v v on- Axial gage section stress
Oxx|gavg- « -+ + - - - Average axial gage section stress
Opz|f - v vve e Axial stress at transition fillet #1
0QE@ - -+ -+ r v Hoop stress component
o First principal stress
O3 oot ii i Third principal stress
O3|gavg - - - - - - - - Average gage section third principal stress
Trz « v o oo e e et Shear stress component
Trzlgavg -« -« - - - - Average gage section shear stress
Trz{gmax - - - - - - - Maximum gage scction shear sticss
Ur oo e Radial displaccment component
Uz L Longitudinal displacement component
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INTRODUCTION

A critical requirement in the design of uniaxial compression specimens is that failure be
reproducible at a controlled location; i.e., gage section, upon exceeding the ultimate material
strength. Failures originating elsewhere may not be indicative of a uniaxial state of stress
and, therefore, may not accurately reflect the ultimate compressive strength of the material.

Rapid fracture rates are commonly associated with compression testing of high strength ceram-
ics. These fracture rates prevent the origin of failure initiation from being dctermmed by conven-
tional methods. Compressnon tests performed using recommended loading rates’ (45 KN/min,
10,000 lb/min) result in instantaneous failures at ultimate load. Therefore, performance compari-
sons made between various specimen configurations were based upon statistical evaluations of test
data and visual inspection of failed sections. Strength data containing mixed failure modes
yielded conservative ultimate compressive strengths and increased scatter of data.

The need for an optimized compression test for high strength (<1 GPa) ceramics resulted in
the development of the two specimen geometries shown in Figure 1. Tracy2 developed and suc-
cessfully used the A-type specimen for compression testing of 94% alumina (A1203}) The B-type
specimen was a modified version of the latter and was developed by Dunlay et al.” Actual
dimensions for each are shown in Table 1. The specimen shapes were of the familiar dumbbell
type and their relative differences were due to variations in proportionality only; i.c., gage section
lengths and diameters. Both specimens were designed to: (1) provide uniaxial stress distributions
within their respective gage area, (2) ensurc fracture within the gage areas, (3) minimize cffects
of local stress risers, and (4) provide the optimum gage length for column buckling stability.

Table 1. SPECIMEN DIMENSIONS

Overall Gage Gage Gage End Cap
Specimen Length Length Diameter Volume Diameter
Type [em (in.)] fem (in.)) [cm (in.)] [em?® (in.%)] [cm (in.)]
A 3.650 0.953 0.635 0.302 1.270
(1.44) (0.375) (0.25) (0.018) (0.5)
B 3.050 0.762 0.508 0.154 1.020
(1.20) (0.30) (0.20) (0.009) (0.40)

The scope of this ctfort was twofold. First, to analytically obtain and comparc stress
distributions and effects of stress concentrations for both the A-type and B-type uniaxial compres-
sion specimens. Seccondly, to determine if the compressive strengths measured with the A-type and
B-type specimens were from the same statistical population and independent of specimen volume.

DESCRIPTION OF THE TEST SETUP

Ceramic dumbbell-shaped specimens were loaded using a universal test machine with preci-
sion machined steel fixtures. The specimen cnds, called end caps, were designed as such to mini-
mize cccentricities duc to bending.  Tungsten carbide (WC) loading blocks were positioned on

1.  ASTM Standard Test Mcthod for Compressive (Crushing) Strength of Fired Whiteware Matenals (ASTM € 773). Amenican Society for
Testing and Materials, Philadelphia. PA. 1983

TRACY, C. A. 4 Compression Test for High Strength Ceramics. Journal of Testing and Fvaluation, v. 15, no. 1, January 1987, p. 14-19.
3 DUNLAY, W. A ctal. A Propnsed Uniavdal Compression Test for High Stength Caramics. U S, Army Matenals Technology [aboratory, TR 8989,

)




both specimen end caps and were used to ensure that fracture did not initiate within the

end caps. Furthermore, since the compliancy for WC was less than that of Al,O3, the differ-
ential shear stress along the interface provided a degree of lateral motion restraint to the
end caps. This restraining effect assisted in maintaining alignment of the components within
the load path and preventing radial tensile failures within the specimen end caps. The geom-
etry of the loading blocks are shown in Figure 2.

FINITE ELEMENT ANALYSIS

In order to assess all, if any, structural deficiencies of the A-type and B-type ceramic com-
pression specimens, it was necessary to perform a finite element analysis (FEA) on each. The
models would efficiently verify: (1) the existence of a uniaxial compressive stress distribution in
the gage section, (2) any stress concentrations present within each specimen, (3) location and
magnitude of the maximum compressive stress, and (4) if any significant tensile stresses existed
within the specimens, or more specifically, the end caps. Three models in particular were devel-
oped which included both coarse and fine density B-type specimen meshes and one fine density
A-type specimen mesh. Contour plots of various stress components allowed visual inspection of
the respective stress distributions.

Coarse Density B-Type Model

Earlier experimental3and finite element analysis efforts on the B-type specimen were per-
formed by Dunlay et al.” on a wide variety of high strength ceramic materials. Results of lin-
ear-clastic finite element solutions were presented for each material.

The current effort began with a regeneration of the same B-type specimen model devel-
oped in Reference 3. This was performed to ensure repeatability of previous analysis results.
The specimen portion of the model consisted of 410 eight noded, isoparmetric, quadrilateral
elements employing quadratic displacement functions. Since the specimen shape and applied
boundary conditions were axisymmetric, a two-dimensional quarter model configuration was
used, as shown in Figure 3. Nodal displacement constraints along the left and lower bound-
aries reflected the axisymmetric nature of the specimen geometry.

Only the Al;O3 materials was considered in this effort since compression test data for
this material existed for both A and B specimen types. The material properties for the
Al,O3 specimens and WC loading blocks used in the FEA modelling were taken from Refer-
ence 3 and are shown in Tablc 2.

Table 2. MATERIAL PROPERTIES

Uc' E°
Material (GPa) (GPA) v
Al203' A-Type 3.49 280 0.23
B-Type 3.59 280 023
WC® 429 606 0.28

* Uniaxial compressive strength

°  Elastic modulus sonic (strain gage) method
Poisson's ratio sonic method

% Kennemetal (TM) grade K3406

' Coors Ceramic Co., AD94




As recommended in Reference 3, the loading conditions imposed on the FEA model
should be such that the axial compressive stress within the gage section (oz)g) approximated
the compressive strength (o¢) of the Al,O3; material. Corresponding, experimentally obtained
compressive strengths SUZZIS) for the A-type and B-type specimens were 3.49 GPa and
3.59 GPa, respectively.

The coarse B-type specimen model was loaded by imposing a uniform, vertical displace-
ment condition (d;) across the top surface of the loading block. An assumption of infinite
friction was made along the interface between the specimen and loading block. Work per-
formed in Reference 1 validated the assumption of infinite friction and its effects on model
accuracy.

The displacement used to satisfy the gage section stress approximation was 6.2 x 1073
meters in the negative Z (vertical) direction, J,. Figure 3 shows the deformed B-type speci-
men mesh. This resulted in the gage section average axial stress Ozz|gavg of -3.677 GPa. A
plot of the axial stress distribution is shown in Figure 4a. Radial (o) and hoop (cge)
stresses were tensile in the gage section and were less than 1% of the axial stress. Plots of
these components are shown in Figures 4b and 4c. Also in this region, the average compres-
sive principal stress (03avg = -3.675 GPa) was nearly identical to the average axial stress
(02z|gavg = -3.677 GPa) indicating that the shear stress (trz|gavg = 4 x 107 GPa) was practi-
cally zero. All averaged gage section results were based upon stresses sampled at the fifth
Gaussian integration point within elements located along the boundary defined by Z = 0,
0sr=r,. See Figure S for locations of Gaussian integration points. The axial compressive
stress 0,; was essentially uniform along this boundary being only 0.5% greater at the center
than the edge.

Primary attention was given to the transition point between the gage section and fillet
#1. Referring back to Figure 3, bending was evident about this point. The axial stress at
the point of transition og;|¢ was -4.029 GPa. In comparison to the gage section average axial
Stress 0gz|gavg Of -3.677 GPa, it was readily apparent that a local stress concentrator existed
at this point. The related stress concentration factor (SCF) was defined as:

Oz |f

T2z |gavg

SCF = (1)

and is valid for linearly elastic materials. (In this class of matcrials, the SCF is solely depen-
dent upon the geometry and ncither the applied stress nor the material properties.) The
resulting SCF value for the coarse B-type specimen model was 1.096. As a result of this
stress concentration, the transition point between the gage scction and fillet #1 was likely to
be the location of failure initiation within the specimen.

Radial o and hoop ogg stress components within the specimen end caps were tensile with
maximum magnitudes of 127 MPa and 217 MPa, respectively. The maximum tensile radial stress
was located along the axial centerline, as shown in Figure 4b. The maximum tensile hoop stress
existed at fillet #2 and is shown in Figure 4c. Since the hoop stress is tensile and dominates
within the specimen cnd cap. the first principal stress o) (maximum tensile) shares the same peak
magnitude and location.  Additional stress component contour plots are shown in Figures 4d
through 4f.




Fine Density B-Type Model

The refined B-type model of Figure 6 was generated for determining the effects of mesh
density and convergence on the various stress components. The number of specimen ele-
ments used in this model was increased uniformly to 663 (253 more than that found in the
original Dunlay and coarse B-type models). This resulted in a 30% increase in the number
of elements located within the gage section. The axisymmetric boundary constraints, uniform
displacement condition 8,, and material property sets used were identical to those of the
coarse B-type model.

Results indicated that the mesh refinement effects were minimal. The most significant
change was found within the end cap. A decrease in the maximum tensile radial stress o by
2.36% was realized. At the transition point between fillet #1 and the gage section, the axial
stiess o;|¢ decreased by 0.10%. The gage section average axial stress oy gavg also decreased
but only by 0.08%. The SCF decreased slightly to 1.095. However, the transition point
between fillet #1 and the gage section remained as the expected location of failure initiation
within the specimen.

In the gage section, the average principal compressive stress (03|gavg = -3.672 GPa) var-
ied from the average axial stress (0z|gavg = -3.674 GPa) by -0.04%. 1t follows, therefore,
that the shear stress was essentlally zero (r,z|gmax =3x 10™ GPa). A nearly uniaxial state
of stress was shown to exist in the gage section along the line (z = 0, 0sr=ro) with o4,
varying only 0.5% between the center and the edge.

All other stress components varied from those of the coarse B-type model by less than
0.5%. Locations of maxima/minima stress components and principal stresses were the same
for the coarse B-type model. The deformed model and stress contours are shown in Figure
6, and Figures 7a through 7f, respectively.

Fine Density A-Type Model

A finite element model of the A-type specimen was produced with the same number
of elements used in the refined B-type mesh, as shown in Figure 8. The axisymmetric
boundary constraints and material property sets matched those of the previously described
models.

Experimental data of the Al,O3 material was ava:lablc for the A-type specimen.
The obtained compressive strength was -3.49 GPa’ To satisfy the gage section axial stress
requirement, the loading condition must be such that oz, approxlmatcd the comprewve
strength of the material. A uniform vertical displacement condition, d, = -7.2 x 10 meters,
across the top surface of the loading block provided a nearly uniaxial state of stress within
the gage section. The average gage section axial stress, 0;7|gavg. and average compressive
principal stress, 03|gavg, were -3.479 GPa and -3.475 GPa, respectively. Along the boundary
(z = 0, 0sr=r,), the axial stress oz;)5 was only 0.61% grcater at the center than the cdge.
The maximum shear stress, 7,,, within this section was 3 x 10* GPa.

The maximum axial compressive stress occurred at the transition point between the

gage section and fillet #1. This stress, o,,|r, was -3.881 GPa and rcflected the deforma-
tion by bending. Correspondingly, the SCF was 1.116. As rcsults of the previous B-type




models indicated, the A-type specimen was also susceptible to failure initiation at this point
of transition. Maximum radial and hoop stresses were tensile in the end cap with mag-
nitudes of 139 MPa and 212 MPa, respectively. The deformed A-type model and associ-
ated stress contour plots are shown in Figure 8 and Figures 9a through 9f, respectively.

SUMMARY OF RESULTS

Finite element modelling was successfully performed on the A-type and B-type ceramic
uniaxial compression specimen designs. Stress components and stress concentration fac-
tors obtained for each model developed herein are tabulated in Tables 3 through 5. Com-
parisons made between the current effort and that reported by Dunlay et al. provided
overall agreement for the B-type specimen. No comparisons were available for the A-type
specimen since it was modelled only in the current effort.

Table 3. MAXIMUM COMPRESSIVE AND SHEAR STRESSES

Finite Element Model
Stress Coarse Refined Fine Max.
Component Dunlay B-Type B-Type A-Type Location
(GPa) B-Type 8z = -0.0062 é; = 0.0062 8z = -0.0072 (See Map*)
Ozzig.avg -3.59 -3.677 -3.674 -3.479 —
Ozz|t -3.59 -4.029 -4.025 -3.881 A
O N/A -0.386 -0.387 0.444 B
Trz N/A -0.860 0.859 -0.908 D
o1 N/A 0.252 -0.252 -3.939 E
a3 -3.96 -4.038 -4.034 -3.895 A

*See Table 5 for location map.

Table 4. STRESS CONCEMTRATION VALUES
AT TRANSITION POINT BETWEEN GAGE
SECTION AND FILLET #1

Specimen Model SCF
Dunlay B-Type 1.100
Coarse B-Type* 1.096
Refined B-Type* 1.095
Fine A-Type* 1.116

*Based upon averaged gage section stress (oz) at
Gaussion point #5 on line (z = 0, 0<r<ro).




Table 5. MAXIMUM TENSILE STRESSES

Finite Element Model

Stress Coarse Refined Fine Max.
Component Dunlay B-Type B-Type A-Type Location
(GPa) B-Type d; = 0.0062 oz = -0.0062 dz = -0.0072 (See Map)
On 0.126 0127 0.121 0.139 F
Io0 0.213 0.217 0.216 0212 C
o1 0.213 0.217 0.216 0.212 o]
i
(z)7
F‘. p—
C
{
8

——(r)
Maximum Stress Location Map

Correlation of the rcsults between the Dunlay and coarse B-type specimen modcls was
affected by the approximation imposed on the gage section axial stress. The constraint
imposed on matching ultimate compressive strengths to gage section axial stresses was not prac-
tical since 0,;|g varied along the boundary (z = 0, 0<r=r,) for each model. Results docu-
mented by Dunaly et al. did not provide such a match, specifically along the boundary (z =
0. 0<sr=<ry). Hence, the current effort treated the constraint only as an approximation and
determined the variability of strcsses within the gage section more accurately.

Results of the A-type and B-type specimen models exhibitcd a uniaxial state of compres-
sive stress within the gage scctions.  Negligible uniformity variations of the axial stress, og;(,.
from the centers of the gage sections to the outer surfaces existed and were less than 0.61%.
Furthermore, all modcls suggested that failure initiation would originate at the transition
points between the gage scctions and fillet #1.  Local stress risers were determined at these
transitions and the resulting SCFs were determined to be:  1.116 for the A-type. 1.096 for
the coarse B-type specimen, and 1.095 for the refined B-type specimen.  Conscquently,




strength data acquired through either the A-type or B-type specimen configuration may not
provide a true measure of a material’s ultimate compressive strength. Such data should be
treated as conservative approximations of ultimate compressive strength.

Experimental results obtained for the Al,O3 material indicated that greater ultimate compres-
sive strength was observed with the B-type specimen. Furthermore, to evaluate the issue of speci-
men volume dependency on ultimate strength, two paired statistic T-tests were performed. The
first T-test was conducted on compression test data using the combined population of A-type and
B-type specimens. The second T-test performed was based upon a corrected version of the same
combined population. This correction consisted of multiplying the ultimate compression data for
each specimen by its respective SCF to provide the maximum stress. Since the rapid fracture
rates of high strength ceramics prevent the location of failure initiation from being detected by
conventional means, it was assumed that all specimens failed at the fillet-gage transition. The
original and corrected values for each specimen are listed in Table 6.

Table 6. UNIAXIAL COMPRESSIVE STRENGTH FOR Al20O3

Experimental Test Resuits* - Ultimate Stress (GPa)

A-Type B-Type
Test A-Type Spec. B-Type Spec.
No. Spec. Correctedt Spec. Corrected*
1 3.51 392 356 - 3.90
2 3.42 382 359 393
3 3.40 379 368 403
4 3.43 383 3.80 4.16
5 345 3.85 3.56 3.90
6 3.56 397 3.60 395
7 3.61 403 3.61 3.96
8 3.49 3.89 3.44 377
9 344 384 34 374
10 363 405 3.70 4.06
Mean 349 £ 2% 390 = 2% 359 £ 3% 394 + 4%

*See Referemce 3 for uniaxial compression test data.
TMuttiplied by respective stress concentration factor (SCF).

Results of the T-tests showed that the original data passed at only the 1% significance
level while the corrected data passed at better than the 20% significance level. Thus, it is
probable that the compressive strength of the ceramic material was independent of the speci-
men volume tested (unlike the tensile strength which decreases with increasing specimen vol-
ume and follows a Weibull distribution).

Stress concentration factors derived in the current effort promote the use of the B-type
specimen for realization of greatcr, more accurate ultimate strengths.  Furthermore, since the
volume of and the load required to fracturc the B-type spccimen arc substantially less than
that of the A-type specimen, it is more economically and statistically desirable to manufacture
the former.




RECOMMENDATIONS

Continual development of uniaxial ceramic compression specimens is recommended to alle-
viate effects of local stress concentrations in the vicinity of surface transition points. Work
performed by Oplinger et al4 suggests the use of a streamline-shaped profile for uniaxial ten-
sile specimens of various materials. The streamline concept proves (1) surface boundaries for
which potential stress risers are eliminated at transition points, (2) increased probability of
gage section failures, and (3) reduction in scatter of test data. This approach warrants tur-
ther consideration as an alternative for designing uniaxial ceramic compression specimens.  An
experimental testing effort is also recommended to confirm the volume independence on the
compressive strengths of ceramics.
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Figure 1. Specimen configurations (quarter geometries shown).

4. OPLINGER. D. W., ¢t al. On the Streamline Specimen for Tension Testing of Composite Materials.  Amenican Socicty Lor Toesting and
Matenials, Philadelphia. PA. 1985, p. 532-554.
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Figure 7a. Axial stress component (0z)
(fine B-type model}.
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